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Abstract: KNL1 (kinetochore scaffold 1) has attracted much attention as one of the assembly elements
of the outer kinetochore, and the functions of its different domains have been gradually revealed,
most of which are associated with cancers, but few links have been made between KNL1 and male
fertility. Here, we first linked KNL1 to male reproductive health and the loss-function of KNL1
resulted in oligospermia and asthenospermia in mice (an 86.5% decrease in total sperm number
and an 82.4% increase in static sperm number, respectively) through CASA (computer-aided sperm
analysis). Moreover, we introduced an ingenious method to pinpoint the abnormal stage in the
spermatogenic cycle using flow cytometry combined with immunofluorescence. Results showed
that 49.5% haploid sperm was reduced and 53.2% diploid sperm was increased after the function of
KNL1 was lost. Spermatocytes arrest was identified at the meiotic prophase I of spermatogenesis,
which was induced by the abnormal assembly and separation of the spindle. In conclusion, we
established an association between KNL1 and male fertility, providing a guide for future genetic
counseling regarding oligospermia and asthenospermia, and a powerful method for further exploring
spermatogenic dysfunction by utilizing flow cytometry and immunofluorescence.

Keywords: KNL1; immunofluorescence staining; flow cytometry; oligospermia; asthenospermia

1. Introduction

For eukaryotic cells, the process of accurate chromosome separation is described as
a delicate instrument that each slight error may cause dysregulation of cell proliferation
or even disease phenotype [1–4]. The kinetochore is a macromolecular protein complex
that assembles at centromeres and connects to spindle microtubules [5–7]. It also performs
several indispensable functions in the cell-division process by linking the centromere and
microtubule, providing a platform for the spindle assembly checkpoint (SAC) protein [8–11].
More than 100 kinetochore proteins from yeast to mammalian cells have been identified [8].
The study of kinetochore compositions is significant and necessary to shed light on this
intriguing complex in multiple fields concerning functions, evolutions, and diseases.

KNL1 (also known as CASC5, D40, Blinkin) [12] is one important member required for
genomic stability in eukaryotes in the conserved KMN network (KNL1 complex, NDC80
complex, Mis12 complex), constituting the core microtubule-binding site at the kineto-
chore [13–15]. KNL1 regulates cells by coordinating multiple protein–protein interactions
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through different domains on its protein structure [16]. At the N terminal of KNL1, the
KI motif interacts with the Bub complex via TPR domains [17]. At the C terminal, the
predicted coiled-coil domain and RWD repeats domain binds to Zwint1 and Mis12, respec-
tively, which are required to associate with the inner kinetochore [18]. As functions of
KNL1 complex domains were subsequently revealed [19–21], researchers have focused on
the link between them and diseases. Defects in KNL1 function have been implicated in
genome instability, leukemia, microcephaly, and colorectal cancer [22–25]. Recently, Wei
et al. [26] proved that KNL1 stabilized SAC to ensure timely anaphase entry and accurate
chromosome segregation during oocyte meiotic maturation, which stimulated our curiosity
about the function of this gene in reproduction. Male reproductive health research is still a
hot topic, but there is no association found between KNL1 and male reproduction at the
present stage.

Flow cytometry (FCM) is well known for its traits of enabling multi-parameters and
rapid quantitative analysis of single cells or other biological particles, and it is widely
used in the medical field [27–29]. The use of FCM in sperm detection has a long history
(Table 1); however, we found that the established methods were based on FCM combined
with different fluorescent dyes to detect, which has high requirements for instruments
and antibodies. In addition, researchers mainly focused on the abnormal morphology
and biochemical indicators of sperm. Less research has focused on cell cycles. Miki et al.
detected the obvious differences in the composition of haploid, diploid, and tetraploid cells
in spermatogenesis and found additional cell groups in the experiment group by using
flow cytometry, but they did not state the problem stages specifically [30]. In this point, we
converted the dye-staining signal used for FCM into an immunofluorescence (IF) signal that
could be observed by microscopy used for the detection and localization of a wide variety of
antigens [31], such as GFRα1, PLZF, C-kit, STRA8, γH2AX, and Sycp3, in the case of single-dye
FCM detection to further determine the specific stage of the spermatogenesis cycle.

Table 1. Part of the literature on the changes of FCM used in sperm detection.

Researchers Year Methods Machine Type Detection

Miki
Hara-Yokoyama

et al. [30]
2019 FCM + PI FACSCalibur

The proportion of haploid, diploid,
and tetraploid cells during

spermatogenesis

Xianrong Xiong
et al. [32] 2021 FCM + Hoechst33342 + Allura Red MoFlo XDP Sperm X and Y were sorted out

Marc et al. [33] 2022 FCM + Simultaneous co-staining
(CMA3 and Yo-Pro-1) CytoFLEX cytometer

Sperm quality parameters
(morphology, viability, total and

progressive motility)

Raul et al. [34] 2021 The co-staining LD + AO CytoFLEX S Sperm membrane integrity and
DNA fragmentation

Phillip et al. [35] 2022
FCM + a variety of fluorescent dye
(PTYR, PDK, FITC-PNA, PI, M540

and Yo-Pro-1)
CYAN-ADP Sperm capacitation and functions

Evelyn et al. [36] 2023 FCM + co-staining SytoxGreen™
and dihydroethidium (DHE) Amnis® ImageStream® Certain morphologic

abnormalities and ROS

Here, we first found that the loss of KNL1 caused oligospermia and asthenia in mice
and detected the abnormal composition of different ploidy sperm cells by FCM. The
knockout of KNL1 could lead to a decrease in the immunofluorescence signal of GFRα1,
PLZF, γH2AX, and Sycp3 by employing IF staining, which means the spermatocytes
arrested at the meiotic prophase I of spermatogenesis. Moreover, the spindle was unable to
maintain its polarity and alignment correctly in spermatocytes in GC-2 cells, which resulted
in the assembly separation of the spindle and confirmed that the method of FCM plus IF
was useful in detecting the periodic location of spermatogenesis problems. In a word, our
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study not only provides a powerful method for spermatogenic dysfunction by FCM and
IF but also exposes the relationship between KNL1 and reproductive development, which
helps to determine genotypic–phenotypic associations as well as improve the diagnosis
rate of male infertility.

2. Materials and Methods
2.1. Cell Lines and Cell Culture

GC-2 (CEMC, Sydney NSW, Australia) cells were purchased from the Center for
Excellence in Molecular Cells Science and cultured in DMEM (ThermoFisher, Waltham,
MA, USA) supplemented with 10% Fetal Bovine Serum (Gibco, Grand Island, Australia)
and 1% Penicillin-Streptomycin Solution (Gibco, Grand Island, Australia). All cells used in
experiments were cultured at 37 ◦C in a 5% CO2 incubator.

2.2. Mice Culture

Sexually mature male ICR mice (more than four weeks old) were purchased from
Charles River Laboratory Animal Technology CO., Ltd. (Wilmington, MA, USA) The
mice were placed in a specific pathogen-free animal room under controlled conditions
(temperature, 25 ± 2 ◦C, humidity (50–60%), and a 12/12 h light/dark cycle. All mice were
acclimated to the culture environment for at least one week before formal experiments.
After the completion of the operation, the mice were executed after two spermatogenic
processes, and the subsequent experiments continued on the mice.

2.3. Seminiferous Tubule Injection Experiment

ICR Mice were anesthetized by intraperitoneal injection (sodium pentobarbital). On
the microoperation table, the reproductive organs were exposed with surgical scissors
and surgical tweeds, and KNL1 siRNA (60 µg) mixed with Entranster in vivo (Engreen
Biosystem, Beijing, China) solution, added with bromophenol blue as an indicator, was
injected into the seminiferous tubules of the mice. After completion of the operation, the
wounds of the mice were sutured.

2.4. Sample Processing for HE Staining and CASA

After two spermatogenic cycles, mice were executed and testes were removed for the
first recording of phenotypic data such as length, width, and surface area. The testis and
epididymis were collected and placed in a fixative solution, sectioned, and stained with HE.

The epididymis was collected and cut, and the sperm was extruded by gently squeez-
ing the epididymis with ophthalmic forceps. Then, the mixture was incubated at 37 ◦C,
5% CO2, and saturated humidity for 20 min. After the semen was completely liquefied, the
mixture was evenly added to the corresponding counting board for detection for CASA
detection (Hamilton Thorne, Beverly, MA, USA, TVOS) using the following parameters:
VCL cutoff of 36 M/s, VSL cutoff of 5 µm/s, VAP cutoff of 20 µm, progressive minimum
PR cutoff of 32%. At least 200 sperm were analyzed, and the results of the two analyses
passed the statistical 95% CI. The remaining testes and epididymis tissues, which were left
over after the experiment above, were frozen at −20 ◦C.

2.5. Flow Cytometry Experiment

The testis was dissected out, precooled, and washed once with 1X PBS (Solarbio,
Beijing, China). We removed the tunica albuginea of the testis and fully cut up testicular
tissue into the EP tube. Type II collagenase (Life-iLab, Shanghai, China) was added in
1 mL DMEM/F12 to a final concentration of 1.5 mg/mL, and the chopped testicular tissue
was transferred to 37 ◦C and digested with 50 r/min shaking for 20 min. Then, the
supernatant was removed by centrifugation at 1500 r/min for 5 min. Type II collagenase
and hyaluronidase (MERK, Kenilworth, NJ, USA) were added to 0.5% trypsin to a final
concentration of 1.5 mg/mL. We added 500 µL to resuspend cell mass and digested for
20–30 min at 37 ◦C with shaking at 150 r/min. Digestion was terminated by adding 500 µL
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DMEM/F12 and centrifuging at 1500 r/min for 5 min to remove the supernatant. We
added 500 µL PBS (containing RNaseA (50 µg/mL)) and incubated at 37 ◦C for 30 min, and
centrifuged at 1500 r/min for 5 min to remove the supernatant. The samples were washed
once with PBS and centrifuged at 1500 r/min for 5 min to remove the supernatant.

The working mixture of Tritonx-100 + PI (biosharp, Shanghai, China) was added: PI
to the final concentration of 50 µg/mL, Tritonx-100 (Sigma-Aldrich, Saint Louis, MO, USA)
to the final concentration of 0.03%, and cells were drilled and stained for 10 min at room
temperature in the dark. After all the treatment, the mixture was filtered with a 200 mesh
filter and test on the machine.

2.6. TUNEL and PNA Method

The mice were killed by cervical dislocation, and the needed testicular tissue was
removed and cut into a small piece 2–3 mm thick to facilitate the penetration of the fixative.
The cut testicular tissue was washed with 1X PBS, fixed in the testicular tissue fixation
fluid (Servicebio, Wuhan, China), and sent to the Servicebio Company (Wuhan, China) for
TUNEL and PNA detection.

2.7. Immunofluorescence Staining

The sections or cell slides were washed with 1X PBS. They were fixed with
4% paraformaldehyde (Solarbio, Beijing, China) for 30 min at room temperature and
washed three times with 1X PBS for 3 min each time. Membranes were permeabilized with
Triton X-100 for 30 min at room temperature and washed three times with PBS for 3 min
each. The cells were blocked overnight at 4 ◦C in 3% BSA (Solarbio, Beijing, China). The
primary antibody was diluted, incubated at 37 ◦C for 1 h, and washed three times with 1X
PBS for 5 min each time. The secondary antibody was diluted, incubated at 37 ◦C for 1 h,
and washed three times with PBS for 5 min each time. Nuclear staining was performed
with DAPI (Beyotime, Shanghai, China) and observed with an Olympus FV 3000.

2.8. siRNA Transfection and Synchronization

The cells were seeded into six-well plates a day earlier to maintain a cell density of
60%–80%. Then, 125 µL DMEM medium without antibiotics and serum was added to the EP
tubes, followed by 100 pmol siRNA, blowing and mixing, then 4 µL Lipo8000™ (Beyotime,
Shanghai, China) transfection reagent was added, blowing and mixing to mix well, and
placed at room temperature for 20 min. Drops were added to six-well plates for cellular
siRNA interference. Some cells were used for qRT-PCR to detect the efficiency of KNL1
interference. For synchronization, after 16 h of interference in the above siRNA interference,
the cells were cultured with 10 mM thymidine (Tsbiochem, Shanghai, China) for 16 h. Then,
we released the thymidine to replace the medium as new and the immunofluorescence
observation was performed 10 h later.

2.9. siRNA Sequence and Immunofluorescence Antibody

The siRNA sequence used in the cell interference experiment is Mus-siKNL1(5′–3′:
UCGAGUCAGCUUUGCAGAUACUAUA) ordered from GENEray Biotechnology. The
qRT-PCR sequence used in the experiment is KNL1-F: CAAAACCGAAAACTGCAGGGC;
KNL1-R: TTTGGCTCAAGACAGCTTACC. The immunofluorescence antibody in the ex-
periment was shown in the Supplement data Table S1.

3. Results
3.1. The Loss-Function of the KNL1 Gene Influences Male Reproductive Phenotype in Mice

We extracted the expression of the KNL1 gene from the single-cell RNA-seq data
database provided by Tong’s team, which uncovered dynamic processes in mouse sper-
matogenesis, revealing extensive and previously uncharacterized dynamic processes and
molecular markers in gene expression [37]. Interestingly, we found that the gene KNL1
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expression is extremely high during spermatogenesis (Figure 1), implicating that the KNL1
gene might play an important role in spermatogenesis.
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Figure 1. Log2 TPM values in different spermatogenic stages. A1 represents the type A1 spermato-
gonia. In represents the Intermediate spermatogonia. BS represents the Type B spermatogonia S
phase. BG2 represents the Type B spermatogonia G2M phase. G1 represents the G1 phase of the
preleptotene spermatocyte stage. ePL represents the early phase of the preleptotene spermatocyte
stage. mPL represents the medium-term phase of the preleptotene spermatocyte stage. IPL represents
the late phase of the preleptotene spermatocyte stage. L represents the leptotene stage of meiosis. Z
represents the even line stage of meiosis. eP represents the early pachytene of meiosis. mP represents
the metaphase pachytene of meiosis. IP represents the late pachytene of meiosis. D represents the
double-line stage of meiosis. MI represents the first meiotic division. MII represents the second
meiotic division. RS1–2 represents the round spermatid stage 1–2. RS3–4 represents the round
spermatid stage 3–4. RS5–6 represents the round spermatid stage 5–6. RS7–8 represents the round
spermatid stage 7–8.

We exposed the testis to injected siRNA (60 µg) in seminiferous tubules of ICR mice to
influence the KNL1 expression in the testis (Figure 2A). After two whole spermatogenic
cycles, we executed mice that received no interference (KNL1-Ctrl mice) and KNL1 exper-
iment mice (KNL1-60 µg mice) to test different phenotype indicators. We found that in
KNL1-60 µg mice, the size of the testis tended to decrease a little compared to KNL1-Ctrl
mice (Figure 2B,C).

The HE staining section of the testis, testicular biopsy, and sperm between KNL1-Ctrl
mice and KNL1-60 µg mice revealed changes in phenotypic characteristics. The testicular
biopsy showed the defect of germ cell development in KNL1-60 µg mice compared to
KNL1-Ctrl mice (Figure 3A). It was obvious that KNL1-Ctrl mice testis sections showed
normal cell populations within the seminiferous epithelium, whereas germ cells lost most
of the important developmentally relevant cells in KNL1-60 µg mice testis. Similarly,
in the epididymal, HE staining section (Figure 3B), a marked decrease in sperm count
was observed in KNL1-60 µg mice. Dramatically, the KNL1-60 µg mice had no mature
spermatozoa or round spermatozoa compared with KNL1-Ctrl mice (Figure 3C).
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Figure 2. Operation diagram and the loss-function of KNL1 to the testicle phenotype. (A) Surgical
model of injecting spermatogenic tubules in mice. a is the epididymis; b is the testis; c is the injection
site in spermatogenic tubules. (B) The testicular phenotype of KNL1-Ctrl mice and KNL1-60 µg mice.
bar = 1 mm. (C) The degree of difference between the KNL1-Ctrl mice and KNL1-60 µg mice. Data
were presented as mean percentages (mean ± SEM) of at least three independent measurements.
Asterisk denotes statistical difference level of significance (*, p < 0.05; ns > 0.05).
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Figure 3. HE staining sections of loss-function of KNL1 on the phenotype of male mice. (A) The
HE staining of testis sections between KNL1-Ctrl mice and KNL1-60 µg mice. The right represents
the magnified portion of the white dashed box in the left line. Bar = 20 µm (B) The HE staining of
epididymis sections between KNL1-Ctrl mice and KNL1-60 µg mice. The left is a 200×magnification
and the right is a 400×magnification bar = 50 µm. (C) HE staining section of sperm between KNL1-
Ctrl and KNL1-60 µg mice. The right represents the magnified portion of the white dashed box in the
left line. Bar = 2 µm.

3.2. The Loss-Function of the KNL1 Gene Results in Oligospermia and Asthenospermia in Mice

For further research, we sought to test sperm motility by CASA (computer-aided
sperm analysis) detection. The mice CASA result showed the sperm count had a signif-
icant decrease in the total count, progressiveness, and motility in the KNL1-60 µg mice
(Table 2 and Figure 4A). Although there was no significant difference in the absolute
number of static sperm between the two groups (Table 3, Figure 4A,B), there was also a
significant increase in percentage (relative to total sperm count), which was harmful to
their breeding in the future.

All of these parameters were consistent with the diagnostic criteria for asthenospermia
and oligospermia. Thus, it could be summarized the loss-function of KNL1 leads to
oligospermia and azoospermia in mice and cause harm to male reproduction.
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Table 2. The CASA count number data of KNL1-Ctrl and KNL1-60 µg Group mice.

Count KNL1-Ctrl Group KNL1 Group

Total 3164 2071 2180 109 419 471
Motile 2569 1776 1878 0 74 75

Progressive 2067 1676 1771 0 62 54
Rapid 2496 1768 1875 0 72 75
Slow 73 8 3 0 2 0
Static 595 295 302 109 345 396

Table 3. The CASA percentage data of KNL1-Ctrl and KNL1-60 µg Group mice.

Percentage KNL1-Ctrl Group (%) KNL1 Group (%)

Motile 81.2 85.8 86.1 0 17.7 15.9
Progressive 65.3 80.9 81.2 0 14.8 11.4

Rapid 78.9 85.4 86 0 17.2 15.9
Slow 2.3 0.3 0.1 0 0.4 0
Static 18.8 14.2 13.9 100 82.3 84.1
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Figure 4. The CASA data of KNL1-Ctrl and KNL1-60 µg Group mice. (A) CASA total detection of
KNL1-Ctrl and KNL1-60 µg. (B) CASA progressive detection of KNL1-Ctrl and KNL1-60 µg. (C) CASA
motile detection of KNL1-Ctrl and KNL1-60 µg. (D) CASA static detection of KNL1-Ctrl and KNL1-60 µg.
Asterisk denotes statistical difference level of significance (**, p < 0.01; ***, p < 0.001, ns > 0.05).

3.3. Loss-Function of KNL1 Causes Spermatocytes Arrest at the Meiotic Prophase I of Spermatogenesis

The above results showed a significant decrease in sperm count and quality. We exam-
ined the integrity of sperm acrosomes by detecting peanut lectin (PNA, Figure 5A,B) and
the results showed that the integrity of KNL1-60 µg mice sperm acrosome was significantly
reduced. Next, we performed the TUNEL experiment on the section of spermatogenic
tubules to prove that the degenerative phenotype of reproduction in male mice was related
to apoptosis. However, to our surprise, there was no significant difference between the
KNL1-Ctrl mice and the KNL1-60 µg mice (Figure 5C,D), which confirmed that apoptosis
was not the main factor inducing reproductive degeneration phenotype of oligospermia
and azoospermia, as many previously reported [38–40].
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To further determine how KNL1 blocks spermatogenesis in mice, we performed flow 
cytometry on their spermatozoa as Miki [30] did. The FC (flow cytometry) results revealed 
(Figure 6A–C) that there was normal sperm cell composition in KNL1-Ctrl mice and the 
proportion of haploid sperm cells (N) was the largest part (77.7%, n = 3). However, in the 
KNL1-60 µg group mice, the proportion of haploid sperm cells decreased significantly. 
The proportion of haploid sperm cells decreased by 49.5% (n = 3), the proportion of diploid 
sperm cells (2N) increased by 53.0% (n = 3), and the proportion of tetraploid sperm cells 
(4N) decreased by 3.6% (n = 3). 

Figure 5. Effects of loss-function of KNL1 on acrosome and apoptosis. (A) The PNA immunofluores-
cence of a section of the testicle. Testis was immunostained with anti-PNA (green). Merge was DAPI
(blue) and PNA (green). The top is KNL1-Ctrl mice and the bottom is KNL1-60 µg mice. Bar = 50
µm. (B) Mean immunofluorescence intensity of PNA between KNL1-Ctrl mice and KNL1-60 µg mice.
(C) The TUNEL assay of a section of the testicle. The FITC immunofluorescence of a section of
the testicle. Testis was immunostained with anti-FITC (green). Merge was DAPI (blue) and FITC
(green). The top is KNL1-Ctrl mice and the bottom is KNL1-60 µg mice. Bar = 50 µm. (D) Mean
immunofluorescence intensity of TUNEL between KNL1-Ctrl mice and KNL1-60 µg mice. All data
were at least measured by three independent experiments. Asterisk denotes statistical difference level
of significance (****, p < 0.0001, ns > 0.05).

To further determine how KNL1 blocks spermatogenesis in mice, we performed flow
cytometry on their spermatozoa as Miki [30] did. The FC (flow cytometry) results revealed
(Figure 6A–C) that there was normal sperm cell composition in KNL1-Ctrl mice and the
proportion of haploid sperm cells (N) was the largest part (77.7%, n = 3). However, in the
KNL1-60 µg group mice, the proportion of haploid sperm cells decreased significantly. The
proportion of haploid sperm cells decreased by 49.5% (n = 3), the proportion of diploid
sperm cells (2N) increased by 53.0% (n = 3), and the proportion of tetraploid sperm cells
(4N) decreased by 3.6% (n = 3).

Considering the FC results and the spermatogenic process, we speculated that KNL1
influenced the process of meiosis of spermatogenesis, leading to the accumulation of diploid
(2N) and tetraploid (4N) sperm cells and the failure of haploid (N) sperm production.

To precisely confirm which stage the KNL1 would affect in the spermatogenic cycle,
we chose different fluorescence markers to map the cycle of KNL1 influenced during
spermatogenesis. By the detection of fluorescence intensity of different markers such as
GFRα1, PLZF, C-kit, STRA8, γH2AX, and Sycp3, we found that GFRα1, PLZF, γH2AX,
and Sycp3 had significant differences in mouse testis between the KNL1-60 µg group and
KNL1-Ctrl mice (Figures 7A–H and S2).
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Figure 6. Effects of loss-function of KNL1 on the spermatogenic process by FCM. (A) The FCM results
of KNL1-Ctrl mice. (B) The FCM results of KNL1-60 µg mice. N, 2N, and 4N represents a different
period of sperm in spermatogenesis (A,B). (C) The percentage of sperm with different ploidy. All
data were at least measured by three independent experiments.

These results again confirmed that the damage caused by KNL1 deletion to sper-
matogonia mainly lies in the meiosis stage, especially affecting the transition stage of the
meiosis I stage and partially affecting mitosis. We thus put forward the hypothesis that the
oligospermia of KNL1 mice mainly resulted from the loss-function of KNL1 on spermatocyte
meiosis, resulting in the block of the maturation process of spermatocytes.

3.4. The Loss-Function of KNL1 Leads to Abnormal Assembly and Separation of the Spindle
Resulting in Unequal Cell Segregation

To further investigate the effect of KNL1 on spermatocyte maturation, GC-2 cells that
could maintain the stage of spermatocyte were selected for this study. The expression level
of KNL1 in GC-2 cells was knocked down by siRNA (Figure S3A), and the GC-2 cells were
treated with paving and immunofluorescence after interference. The results showed that
GC-2 cells treated with KNL1 siRNA exhibited unequal division compared to normal GC-2
cells (Figure 8).
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These results again confirmed that the damage caused by KNL1 deletion to spermat-
ogonia mainly lies in the meiosis stage, especially affecting the transition stage of the 

Figure 7. Immunofluorescence of four markers between KNL1-Ctrl and KNL1-60 µg. (A) GFRα1
fluorescent images of testis in KNL1-Ctrl and KNL1-60 µg. Testis was immunostained with anti-
GFRα1 (red). Merge was DAPI (blue) and GFRα1 (red). (B) PLZF fluorescent images of testis in
KNL1-Ctrl and KNL1-60 µg. Testis was immunostained with anti-PLZF (green). Merge was DAPI
(blue) and PLZF (green). (C) γH2AX fluorescent images of testis in KNL1-Ctrl and KNL1-60 µg.
Testis was immunostained with anti-γH2AX (green). Merge was DAPI (blue) and γH2AX (green).
(D) SYCP3 fluorescent images of testis in KNL1-Ctrl and KNL1-60 µg. Testis was immunostained
with anti-SYCP3 (red). Merge was DAPI (blue) and SYCP3 (red). (E–H) Data were presented as mean
percentages (mean ± SEM) of at least three independent measurements. Asterisk denotes statistical
difference at a p (**) < 0.0 1, p (****) < 0.0001 level of significance. Bar = 50 µm.
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cells with siRNA to interfere with the expression of KNL1. Immunofluorescence results 
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Figure 8. Effect of depletion of KNL1 on GC-2 cell separation. Fluorescent images of GC-2 cells interfered
with by KNL1 siRNA. GC-2 cells were immunostained with anti-α-tubulin (red) and DAPI (blue). Merge
was DAPI (blue) and anti-α-tubulin (red). The right represents the magnified portion of the white
dashed box in the middle. The yellow arrow shows the cells that divide unequally. Bar = 50 µm.

Considering the previous reports of the KNL1 gene in the literature, we first speculated
that KNL1 may lead to unequal division by affecting the spindle. We also transfected cells
with siRNA to interfere with the expression of KNL1. Immunofluorescence results showed
that compared with the non-interference group, the spindle in the KNL1-60 µg group
represented different degrees of abnormality compared to the KNL1-Ctrl group (Figure S3),
such as the emergence of multipolar spindles in the metaphase and the failure of spindle
formation (Figures 9A,B and S3B,C).

In addition, we also observed the phenomenon of chromosomal abnormalities in
interfered cells. Chromosomes were not fully aligned on the equatorial plate in metaphase,
and there was a phenomenon of chromosome lag in anaphase (Figure 9C,D).
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(C,D) The abnormal chromosome arrangements after interfering with KNL1. Yellow arrows represent
chromosomes not aligned on the equatorial plate, red arrows represent lagged chromosomes. Green
is α-tubulin, and blue is DAPI. Bar = 5 µm.
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We inferred that the disorder of the spindle leads to the decline of its ability to regulate
chromosomes and the spindle cannot regulate chromosomes as accurately as before, which
resulted in the abnormal arrangement of some chromosomes based on the evidence above.
The force imbalance causes chromosome lag in the subsequent cell separation and leads to
abnormal cell division.

4. Discussion

Maintaining reproductive health is crucial to successful fertility and a healthy relation-
ship between partners, while most cases of infertility originate from the poor production
of sperm or eggs [41]. Nowadays, male infertility is a big problem plaguing mankind,
which may be caused by genetic factors or an unhealthy lifestyle [42]. There are several
factors such as genetic mutations, infections, anatomical change, and pressure involved
in the normal development and quality of sperm that stop men from being able to father
offspring [43]. The phenotype of nearly 90% of male infertility is mainly reflected in sperm,
including sperm quantity, quality, and activity [44].

KNL1 is an essential large scaffold protein for accurate chromosome segregation in
eukaryotic cells [16]. It was first recognized as a kinetochore protein in 2004 in human
cells [45]. Subsequently, more and more studies have gradually revealed the functions
and corresponding connections of different domains and motifs of KNL1 [9,12,46–48].
Previous studies have shown that KNL1 plays important roles in several types of cancer,
and KNL1 was found to be abnormally expressed in 16 types of cancer [49,50]. However,
its relationship with the male reproduction system remains largely unclear.

In our study, the expression of KNL1 in the testis was knocked down by injecting the
corresponding siRNA into the seminiferous tubules of the mice to explore the influence on
the male reproductive phenotype. To our surprise, no obvious changes in testicular size
were observed in NC and KNL1 groups. However, when we detected the internal physio-
logical structure of the testis and epididymis, we found the KNL1 group lost most of the
important developmentally relevant cells and there is a significant decrease in the number
of sperm (Tables 2 and 3 and Figure 4A–D). Compared to the control group, the quality
and quantity of sperm both have a huge reduction. These phenotypes are consistent with
those previous studies concerning oligospermia and asthenospermia due to gene variants,
oxidative stress, or stimulation of sexual hormone secretion [51–54]. In the flow cytometry,
we found that the number of diploid cells in the experimental group was significantly
accumulated, suggesting that there was a block in the process of spermatogenesis, leading
the number of mature sperm to decrease. At this point, these phenotypes were already
consistent with the diagnosis of oligospermia and asthenospermia.

Next, the effect and underlying mechanism of this block in spermatogenesis were
investigated. Previous researchers found that apoptosis might be one of the important rea-
sons leading to sperm problems [38–40]. However, it was surprising to find that apoptosis
was not the main factor causing sperm reduction and sperm arrest. Immunofluorescence
experiments were performed to detect the markers in each stage of spermatogenesis to
precisely locate the problem period and we found that the attenuation of the fluorescence
signal was most obvious in the meiotic phase, which combined with the previous flow
cytometry results. We believed that the problem of sperm arises in the first meiotic division.
GC-2 cell as a cell model was adopted to explore the specific effect and underlying mecha-
nism after KNL1 interference. We found that unequal division of GC-2 cells occurred after
the knockdown of KNL1 expression in GC-2 cells. Since previous reports have confirmed
the role of KNL1 in the regulation of kinetosomes during cell division, we hypothesized
that KNL1 also has a certain effect on the spindle. Consistent with our hypothesis, there
was a phenomenon of multipolar spindle and spindle dispersion after observing KNL1
knockdown cells by immunofluorescence. Additionally, chromosome disarrangement and
chromosome hysteresis were also observed. Taken together, the knockdown of KNL1 could
lead to decreased adhesion to the spindle, resulting in the abnormal spindle and decreased
tensile force on the chromosome, abnormal division in cells, and increased probability



Sensors 2023, 23, 2571 13 of 15

of aneuploidy in cells. For male reproduction, it can lead to abnormal spermatogenesis,
oligospermia, and asthenospermia.

To conclude, we first revealed the association between the KNL1 gene and spermato-
genic dysfunction and further explored the mechanism of KNL1 in causing the occurrence
of spermatogenic dysfunction. KNL1 can become a potential molecular prognostic and
diagnostic marker in some cases while normal phenotypes are easily ignored. What is
more, our work not only further reveals the role of the KNL1 gene, but also provides a more
accurate tool for detecting the abnormal stages of spermatogenesis by using FCM and IF, as
well as expanding the diagnostic pointer pool in the field of male reproduction. As a result,
it can improve diagnostic accuracy if coupled with other clinical diagnostic technologies.
However, some limitations should be noted. Firstly, although we identified the problem
stage in the meiosis I stage, we did not pinpoint the different stages in meiosis such as the
leptotene stage, or even the zygotene stage, pachytene stage, diplotene stage, and diaki-
nesis phase. Other innovative technology to further explore more accurate positioning is
worth further exploration in our experiment that we should continue to explore. Secondly,
establishing an animal model of the cKO mice to explore the mechanism of KNL1 in more
detail in subsequent studies should be considered. In addition, to date there has been no
reported human case associated with KNL1, and future studies in the reproductive field
should be paid attention to establish a strong link between KNL1 and human sperm quality
and health.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/s23052571/s1, Figure S1. Immunofluorescence intensity of KNL1
between KNL1-Ctrl and KNL1-60 µg. Figure S2: Immunofluorescence intensity of two markers be-
tween KNL1-Ctrl and KNL1-60 µg; Figure S3: siRNA interference efficiency and immunofluorescence
image of normal cell division; Table S1: Immunofluorescence antibody used in the experiment.
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